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NOTE GN EVAFORATION IN POROUS MEDIA

R £ Meyer*
Mathematics Research Center
University of Wisconsin
Madison, WI 53706

ABSTRACT.  Factors are discussed which govern evaporation of liquid
in the small capillaries of a porous medium. Attention is directed to
sheet-like aggregates from which the vapor can.escape with little
obstruction. Marked temperature gradients are then found to be confined
to close neighborhoods of the menisci and evaporation is shown tc proceed
in statiscally quite unstable configurations under a dynamic balance of
surface tension, local evaporation rate and viscous shear. Estimates
of evaporation rates and fluid velocities are given. The results
discourage constitutive theories for porous media because mere size of
capillaries, independently of shape and chemistry, is found to change the
physical processes underlying macroscopic behavior, (T

AD-P004 943

I.  INTRODUCTION. The following study was prompted by recognition
that little is known about the physics of evaporation in fabrics beyond
the guess that the rate of heat supply may equal the rate of latent-heat
expenditure. Fabrics come in a great variety of very different structures
and as a first step, a structure characteristic of "ltypical" porous media
is here envisaged in which the solid matrix is threaded by an irrcgular
network of interconnecting, small capillaries along cach of which the
capillary bore varies greally over relatively small distances. The
immediate challenge is then to isglate some of the many interacting,
physical processes in a single capillary in order to distinguish ‘those
which really govern evaporation there; macroscopic descriptions must
needs reflect the insights therebty gained.

A key restriction that helps in dividing the difficulties is to
focus attention on sheet-like media which are thin in one direction, like
fabrics, because the escape of the vapor is then relatively unobstructed
and consideration of the proc. sses in the vapor can be postponed (to
Section VIII). At First sight, evaporation might be expected to be
controlled by the manner of heat supply, but for capillaries of realistically
small size, most forms of heat supply have similai effects because heat
transfer across the capillary wall is then always important. Since the
physical signposts diverge, unless one be quite specific, attention is
restricted to liquids similar to water, Lo pressures and temperatures typical

of the outdoors, and to throat diameters of about 10-& to 10'2 cm, A final
dividing step is to start with an unrealistic configuration of geometrical

and thermal symmetry in which only a single meniscus needs to be considered
(Section III, IV).

Analysis of the simple thermal balances for that case shows that
significant temperature gradients can occur only very close to menisci
(Section IV), and a rough estimate of evaporation emerges (Section IV).
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It shows the symmetrical case to be normally unstable (Section V).
Evaporation is, in fact, found to proceed in statically grossly unstable
configurations under a dynamic balance depending drastically on viscous
shear. The "Haines Jumps” in the foreground of earlier accounts [1 - 3]
can occur only in much larger passages than would appedr realistic for
soils, oil recovery or fabrics. Instead, the normal state in evaporation
is one of slow liquid motion leaving the small menisci almost stationary,
while most of the mass-evaporation occurs at the large ones (Section VI).
These results furnish a basis (Section VII) for statistical estimates of
macroscopic evaporation rates, provided enough is known about the
statistical distribution of capillary throat sizes. Such knowledge

appears to be an absolute-prerequisite for any useful treatment of fluid
motion in porous media because viscous shear depends so violently on

throat size. As a result, if two media have the same chemistry and
identical shape for their respective void passages, but differ in mere
geometrical scale, then microscopic dynamic balances can be quite different.
This discourages constitutive theories of porous media, of which invariance
to geometric scale is a basic premise,
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There are other caveats, for instance, if the vapor-air mixture
must pass through small throats, the significant gasdynamical processes
must be anticipated to change the evaporation rate drastically. On the
other hand, there are alsomanybits of luck, which meke a realistic
fluid mechancis of porous media more accessible. In particular, the
extreme magnitudes of relevant combinations cf physical parameters will
come to explain, by and by, why errors by only a factor 2, or so, will
be treated so cavalierly.

II. STATIC EQUILIBRIUM, When the escape of the air-vapor mixture
is unobstructed, the pressure throughout that gas is effectively the
ambient pressure, Pa' Admittedly, since surface tension promotes

evaporation, thermal equilibrium between liquid and vapour requires a

gas pressure at their interface which depands on the meniscus curvature.
Helmholtz! analysis [4], however, shows this to be a threshhold effect, and
for realistic capillary bores, the thermal conditions here envisaged

are well below the threskhold [5]. With the apparent contact angle 8
measured as in Figure 1, the pressure on the liquid side of a meniscus

is therefore

Pg z Pa - 20/a, (1)
where a denotes the local capillary radius and ¢ sec R the surface tension.

It will be assumed that 0 < B < n/2, for otherwise, surface tension would
have kept the liquid out of the porous matrix. Body forces will be neglected.
Since it is prohibitive to take account of all the shapes of void-passage
cross-sections liable to occur in a porous matrix, a will be defined by

na2 = area of cross-section; the error in (1) is then one of those treated
cavalierly.

By (1), a connected liquid column is in static equilibrium if, and only
if, a takes the same value at all the menisci bounding the column. The
equilibrium is stable if, and only if, a does not decrease with distance

along the capillary measured toward the gas side at any of those menisci
(Fig 2).
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Figure 2a. Stable equilibrium

Figure 2b. Unstable equilibrium
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Those are' merely local conditions, however. All kinds of void-
passage shapes can be expected in a porous matrix. Figure 3 indicates
one with a liquid column in a position of stable equilibrium. Suppose,
however, -that this' Yiquid' volume be reduced by, say, 30%, e.g., by
evaporation. The remaining l;qu1d column could not then find a stable
equilibrium position anywher in the passage segment shown : it must
move to find a new, stable position elsewhere. The need for such
"Haines jumps" [1] in the Yiquid conflguratlons has dominated the
literature on the physics of fluids in porous media {1 - 3] : on
kinematic considerations, they would be expected to be sudden and
frequent so ‘that fluid motion could ‘appear as a continuous process only
on a long-term average [3]. Analysis of the dynamics (Section VI), however,
will show that such notions can be relevant only to unrealistically large
passages.

II1, THERMAL BALANCE. Prolonged evapération must depend on an external
heat supply, and it .might be anticipated that, not only the rate, but also the
manner, of that supply‘has a major influence on the evaporation process,
However, since the ratio of capillary volume to surface arez is proportional
to the capillary bore, heat transfer across the capillary wall is always
important in small capillaries., That transfer will be found in section IV
to cause an adjustment of temperatures in the fluid and solid that reduces
the influence of the manner of heat supply. To fix the ideas,it will be
envisaged that a reservoir supplies it to the solid matrix, in the first
place, so as to heat it gradually, from the original, uniform temperature
T0 of the whole medium, which may be considered to be known, to a level

T1 at which it is then maintained. Specifically, T0

temperature, and T1 may be near body-temperature, perhaps T1 ~ TO + 50°F,

may be the outdoor

The properties of the solid are outside the scope of this study and will
be assumed uniform. This does not imply a temperature field constant in
time and uniform in space, because evaporation makes the menisci act like
moving heat sinks of changing strength, but the space-average Tm of the

capillary wall temperature will change only slowly with time. The stronger,
local variation in capillary wall temperature can be accounted for
approximately by rough adjustments [5] and meanwhile, the considerations can
be simplified by ignoring the difference between;Tw and the local temperature

of the capillary wall., That will lead to estimates of evaporation at
menisci in terms of Tw, whence estimates of the time development of Tw by

more global considerations will follow,

Since little can be known about the shapes of realistic void-passage
cross-sections, the description of evaporation will be simplified greatly
by representing quantities in the fluid by their averages over a capillary
cross-section and ignoring the errors resulting from use of somewhat
different averages in different contexts. The thermal description is also
greatly simplified, if no liquid motion couples the processes at different
menisci. That is possible in the idealized case of a capillary of radius
a(x) even in distance x along the capillary, if the temperature field is
similarly even and liquid fills a capillary segment between menisci at
x = ¢ £, with a'(2) > 0 for static stapbility (Fig 2a). Such symmetry can
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persist, at least in.principle, -and will be assumed in this Section and
‘the next one.

The local thermal balance-per unit length. is then

- aT
2 2 . _9 L s
ma pg' 2 3t 3 (na Ix ) + .2ash (T - Tl),

where the lefthand side represents.'the local rate of increase of liquid
heat contents: p and ¢ denote density &nd heat -capacity, respectively,
and- the sufflx 2 tistinguishes laqu1d properties. The first term on the
rlghthand side represents the contribution from heat conduction in the
liquid, and the last ‘term, that from heat -transfer across the capillary
wall on the mest rudimentary, conventicnal model of a heat transfer rate
per unit wall area and unit temperature difference represented by a
constant transfer coefficient h. With -the insignificant fu .ner
approximation of neglect of variations in A, o2 and‘cl, the balance

becomes
ar . , .
v on 2 31 zh: -
F. 2 3x (a ax) 00,8 (Tw - IE) (2)

where » denotes the usual heat diffusivity, » = X‘/(pzcz). The liquid
therefor= experiences a typicsl heat cenduction process with variable

effective diffusivity, .oh account: of the capillary shape, and with heat
transfer, but without convection, on- account of the. symmetry.

A- somewhat different balance arises at a meniscus. Since the liquid
and gas are thers envissged in -dew-point equilibrium to begin with, and
since the gas -pressure remsing -at the ambient level Py until Section VIII,

any heaL"eachlngthe menlscus will result meanwhile in evaporation, but
not -[2] in 2 change -of the local temperature Ty from its original level

TO‘ Conduction -threugh- the liquid column in x < & contributes heat to
the meniscus at the rate

2 /
-ma N7/ ), o

if the meniscus is at x = &(t) and a denotes the capillary radius a(%)

ther=, -Conduction through the gas in x > £ does not contribute comparably
because its hezt conddetivity is smaller. If the meniscus is markedly
curved, hest reaches it also by direct transfer across a short segment

of the capillary well and radial heat conduction. The wall area from the
meniscus contact line to the position of its azpex (Fig 1) is approximately

Znazmaz with 0 < 9, = sech - tan8 < 1. The rate of heat transfer across
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this aresa is

2

where hM denotes a value of the transfer coefficient h adjusted [5] to

compensate for the error made by confusing the local wall temperature
at the meniscus with its level further away.

Let S denote a short capillary segment of fixed length which is
stationary in a frame moving with. the local, liquid velocity and which
contains the meniscus at present. The gas pressure and temperature are
constant in S, and if D/Dt denotes the velocity of the meniscus in that
frame, the mass-rate of evaporation in S is

2 .
m=-ma ° py DL/Dt . (3)

The mass of gas in S does not increase at a significant rate because the
densily ratio pg/pQ is about 10-3, in the circumstances envisaged, $¢ that

vapour leaves 5 at the same mass-rate, and the net rate of mass loss in
S is also m; since no liquid enters S. By the First Law, the net rate of
liquid enthalpy loss in S5 equals '.e rate of vapor enthalpy loss from it
less the rate of heat addition by transfer and conduction into S,
2 -
ma [Zath(Tw - TM) - AaTl/ax] = ml, (4)

where L is the latentc heat per unit mass.

IV. THERMAL LAYER., The use of these balances requires a nondimensional
notation, and it is not obvious whether a single length scale X can be
representative of the temperature field throughout a liquid column. Even
without attention to cross-sectional shape, the capillary is described
by the two functions a(x) and a'(x)/a(x) of normally quite different
magnitued and each of which may vary by orders of magnitude along a
capillary. To avoid confusion, let attention be confined first to .a
liquid column segment adjacent to the initial meniscus position x = £(0)
and short enough to occupy only a capillary segment characterized by a
single triplet of scales 3, of the capillary radius, G, of a(x)/a'(x) and X,

e
e

AP

) o

of the unknown temperature variation. But, there isanother thermal length scale,

A = (%Aao/h)% y

3

L
'u_‘

Pl o

5
x

13

of decisive significance because A2/X2 represents the ratio of the thermal
diffusion scale to the transfer scale. How is X related to the other
three length scales?

The present model can give no information on how A compares with 3

and G, but a more detailed calculation [5] shows that A must be anticipated
to be of the order of the capillary radius, so that

May = [x/(zaoh)}'l = Y,

is a parameter of order unity; a rough estimate [5] is Yh ~ 4. Accordingly,

X = ags unless this be found to imply that Tz(x) can vary only on a longer
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scale. The natural temperature-difference scale is Tw -‘TM = 4, and if
T, - Tz("’t) = T(x,t) & ,

t is measured in units of a time scale T, a/a' in units of G, and x,
a and 2, in units of X = a_, then the nondimensional form of (2) and

0
(4) is
2
%0 ot _zafpar _d%r 1, (5)
wt ot a G ox 5;7 Yhza
and.
2
3T . % _ % a4 )
-—x+—2—--—m&-atx-2(t),

respectively, because
T(2,t) =1
in this notation and because the liquid is at rest; here oz = qéhM/h and
€ = CRA/L << 1
in the circumstances here envisaged, eq, € = 1/20 for water and A = 50°F.
Two different time scales have emerged from the balances. The shorter,
aoz/u, characterizes transisnts arising from imbalance of heat trénsfer and

conduction which might be anticipated, eg, in a Haiges jump. It is normally
a rather small fraction of a second, ey, if ¥ = 10-?cmZ/zec and a0 = 10~ %4cm,

then aoz/n = 10'1sec. The motion of the meniscus, on the other hand, is on
the longer time scale ‘
2
3, /(xe) .

The first question must be whether a relatively stable evaporation precess
is possible, and to examine this, the time scale T must be identifiad with

aoz/(ue). If also aU/G << 1, as on2 would usually expect, then the lefthand
side of (5) becomes unimportant by comparison to the righthand terms, in

which a-1 =~ 1, to the same approximation. The balances then imply

Y, HL
Iz exp %’“‘” S YU R YC )AL (6)
h Yh

[except when the capillary segment under scrutiny contains x = 0, in which
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1=2 -l(t)/yh cosh(x/Yh)].

This- soJution describes a very short meniscus layer, of thickness equsl to
the thermal length scale A = Yhao’ in which virtually the whole pro‘ess of

heat transfer to, and heat conduction in, the liquid takes place.

This conclusion destroys the ahalysis sketched so far becausu one of
its main premises -~ that thermal balances can be formulated in térms of
cross-sectional averages -~ cannot apply to precisely the short capillary
segment containing the curved meniscus and all significant temperature
gradients! Any tenable. analysis of the temperature field must account
for the geometry of the meniscus, but that depends -mainly on matters
accessible -only to vague speculation, at best, namely the shape of the
capillary cross-section and the apparent contact angle.

If a tenable analysis could be performed, ~ the other hard, it
vould necessarily lead to the same dimensional groups and would therefore
also predict a dimensional meniscus velocity of the form

y e ffTw"TM)
% e

and a dimensional evaporation time of the form

v ' a /(xe)

0o

for a capillary seqgment of length 3 What has no rational support is the
value (Yh+ a})/‘fh2 of the nondimensional coefficient y predicted by (6).
Thought about extremeé-cases indicates however, that the correct value of
Yy cannot plausibly .be Far from order unity and indeed, that y = 3, 4 or §
cannot usually be very wrong To fix the ideas, therefore, the value y = 4
will be adopted speculatively for illustration. For water (with
¥ = 0.0014 cmz/sec) and € = 1/20, various capillary radii and lengths then

give roughly the meniscus velocites and evaporation times listed in the
following table.

TABLE 1
ag(cm)
102 107 107
aeu/ao 3 x 1072 3 X 10-1 3 cm/sec
% ) 107" w01 1072 0?2 107 o
2080/{QCH) 3 .% 3% 3x 1070 3 x 107 sec
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In sum, the analysis has oeen wrong in everything but its result.
Most of all, what has been proven, if only by contradiction, is that the
temperature varistion associated.directly with evaporation from a
meniscus nust .be quite local. It follows that the main results are also
independent of some other premises There can be no significant,direct
thermal interaction between different menisci even if the liquid moves

on the time scale aoz/(ue); the meniscus velocity should then be

interpreted as that of the meniscus relative to the adjacent liquid and
3 must represent the scale of the capillary radius a at the instanta-

‘necus meniscus position. The manner of heat supply, moreover, can have
less direct influence on the local process than might have been thought
at first : apart from the local dip in solid temperature at the meniscus
(accounted for by a correct value of v) the solid temperature background
of a capillary must -reflect the macroscopic scale of the solid matrix

as a whole and must therefore appear effectively uniform on the length
scale 3 of the local -evaporation process.

In the first place, (6) applies only to a capillary- segmént in:which
the radius differs Gy less than an order of magnitude from that at the
initial meniscus position. Once evaporation has cleared that segment,
however, an aralogous calculation with a different scale 3 applies to the

next segment. Since narrow segments are seen to clear in a much shorter
time than wide ones, it does not appear worth entering here upon the
refinement of replacing 3y from thz start by the capillary radius am(t)

at the meniscus.

V. INSTABILITY. Before evaporation, all menisci bounding a
connected liquid column must be of the same size (Section II), but in a
realistic porous medium a'(x) cannot also be expected to have the same
value at different such menisci. The meniscus velocity (Section IV) then
takes the same value at all the initial menisci positions, but if they
all started to move with it, static equilibrium would be lost promptly.
Surface tension acts towards restoring it, but the differences in meniscus
velocity relative to the liquid act in the opposite sense. Stability of
evaporation therefore pcses a question different from that of static
stability (Section II).

To examine it, consider 2 liquid column bounded by two menisci at
which the gas pressure, p_, and temperature, T, = T_, remain the same,
but at which the capillarf radii differ. To i?lumigate the distinction
from static stability, suppose a'(x) is monotone over the whole liquid-
filled capillary segment, which contains a throat (Fig 4). Denote the
meniscus positions by x = £+ and x = &_ < 2+ and the capillary radii

there, by a(2+) =a, and a(2_) = a_ < a_, respectively; ie, the smaller

meniscus is at the lefthand end of the liquid column. By (1), surface
tension generates a pressure difference
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a - a

p(2+) - p(z_) = 20 ——r =
a3

driving the liquid towards the left.

If a'(x) is not too large, the viscous shear generated by the
ensuing liquid motion sets up a pressure gradient related approximately
'by Poiseuille's- formula

__Ip 4 <p
Q’“‘Bua dx

to the mass-flow rate Q (counted towards the right), which is independent
of x, by mass conservation. Since liquid density variation is
insignificant,

g,
o 8@ [T+ -4
p(%f) -p(R) = - T . [a(x)] " dx,

and since the main contribution to this integral arises from the throat
region, it promotes clarity to write the inteqral as Zt/at“ in terms of

the throat radius a, and a "throat length" lt. The mass-flow rate

t
ié generated by surface tension is then
3 4
=3 a a -a

and the corresponding cross-sectional averages of liquid velocity are

ORI ~ R
£
=
o
+
[+}]
x
P

Q/(npa+2) at the right meniscus and Q/(npa_z), at the left one.

Evaporation, on the other hand, retracts the menisci into the liquid
with velocities Yue/a+ and yne/a_, respectively (Section IV). The center

of the liquid column therefore shifts at the rate

. + 8 a - 822 2

2
A F A LAy
dt Z © 2 aa “{aa !
- + - (JCeaUEt

where
Ce = euu/(vao)

is a capillary number based on evaporation velgcity and is twormally very
small, if the apparent contact angle is not :lose to 90° (Fig 1); for
water, egq, 4a0Ce ~ 1078 cm. The factor of Ce™! in the last bracket,

however, tends to be even smaller, as long as a_ and 5 remain large
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compared to the throat radius a. During such a phase of evaporation,

the liquid column therefore shifts towards the right, ie, in the
direction opposite to that suggested by surface tension alone. Any
statically stable liquid configuration with am'>> a is therefore

unstable under evaporation.

If the menisci were found close to the throat, on the other hand,
in the last stage of evaporstion, then the second term in the last
bracket would be large, the liquid column would move leftward, and
the smaller meniscus would move away from the throat.

In sum, most of the evaporation must be anticipated to occur in
liquid configurations that are not static equilibria, and there might
te preferred positions for the smallest menisci.

VI, DYNAMIC BALANCE, For a realistic impression of evaporation in
porous media, one must therefore consider liquid -configurations far
from static equilibrium, for instance, such as indicated in Figure 5,
which envisages a situation that might be seen in a snapshot of a
"Haines Jump" after evaporation has made one meniscus clear a throat.
The disparity of the meniscus sizes then generates a marked pressure
difference driving the liquid towards the smaller meniscus, and an
unsteady -liquid motion musk be anticipated. There are two very small
time scales, namely the liquid column length divided by the sound speed

in it and the time scale atz/v of viscous diffusion of shear from the
capillary wall in the throat region (Fig 5), which is about 10™%ec in

water, if a, ~ 10™%cm.  The evaporation time scales (Section IV) are
much longer; and the full viscous shear must therefore be expccted to
have been established, particularly in the throat region. The drastic
degree to which this viscous shear in small capillary throats will be
seen presently to control evaporation iilustrates the reason for the
prominence of Darcy's law in porous fluid mechanics.

The pressure imbalance drives a mass-flow rate Q(t) < 0, since it
is directed towards the smaller meniscus (Fio "), At the same time,
the menisci retract into the liquid with the_.. respective evaporation
velocities Yue/a+ and Yxe/a_ (Section IV). It will promote clarity,
and help to distinguish the more generic case from that discussed in
the preceding Section, to exploit the disparity in meniscus sizes
(Fig 5) to the degree of neglecting a_ against a,. The larger meniscus
is then considered to move just with the velocity dx+/dt = Q/(npa+2),

but the smaller, to move with the velocity

dx_/dt = ye/a_+ 0/(npa %) (1)

relative to a fixed frame. The pressure difference is now approximated

as p, --p_ =z Zo/a_ and the total shear stress is -8y Qlt/(npata), in
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terms of the "throat length" % of Section V. In small capillaries,

t

the pressure drop and viscous shear cannot come into significant
imbalance, and therefore,

4
20/a_ = -8y ta/(npat ).

This is the microscopic version of Darcy's law for liquid motion driven
through a small capillary by surface tension osecf at menisci of
disparate size. Since it relates Q to a_, (7) may be written

dx ’ a 2 2
8 ——=vyel 1~ —9 _ t
- dt stuuzt a_ !

and since da/dx < 0 at the position x = x_(t) of the smaller meniscus
(Fig 5), this shows the spproximate dynamics to be represented by an

equation of the structure

c
=y 1, /e, = -2vea'(x) > 0, (8)
a

and with increasing time, a_2 must approach
c, = Oa a/(ayenuz )
2 t A

This does not represent a strict equilibrium because Tw’ and
therefore also €, ray change slowly with time, and in any case, the
liquid keeps moving, but only a minor drift of the smaller meniscus
results therefrom. In terms of a hybrid capillary number

Ct = euu/(oat)
based partly on evaporation and partly, on throat radius, the smaller
meniscus remains close to the position where

a/a, ~ (wetr /a)h (9)

The capillary radius at the smaller meniscus is thus seen to depend
most of all on the throat radius, indeed, to be proportional to atz, on
account of the dominance of viscous shear in small capillary throats.
For .. rough impression, for water, € = 1/20, 3, = 10'30m and sec § =2,

the hybrid capillary number iz Ct ~ 10'5; a value 15 of 4y is unlikely
to be wrong by a large factor, and if zt = ZDat, then the last formula
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Qfédgégs;a_/at ~ 20. Figure 5, accordingly, gives a reasonable impression
‘of a-typical configuration. Table I gives an. impression of the liquid
vgidbity': qu-at z 10_3cm, eg, it is only about 10'2cm/sec‘at the
siigller meniscus, and the velocity dx+/dt of the larger meniscus relative
to a fixed -frame is even less.

Most of the mass-evaporation, on the other hand, occurs at the
lavrger meniscus (Fig 5) because its area is larger; by (3), it is

m = TypHea, = nya+A(Tw - TM)/L . (10)

For water and a, = 1mm, eg, it would be about 10'7gr/sec. In turn, an
impression of the dependence of the wall-temperature level Tw upon the
external heat supply begins to emerge, because the rate Qh of that
supply per meniscus is mL. In a liquid column bounded by just two
menisci of disparate size, the smaller expends relatively little of

this, so that (10) shows the external heat supply to such a column
to depend only on Tw and on the capillary bore at the larger meniscus.

The critical importance of capillary size merits re-emphasis
here. The pressure difference due to surface tension is proportional

to am"1, and so is the meniscus velocity relative to the liquid, but

-4

E o
Accordingly, if two porous samples be compared which are identical in
regard to chemistry and to shape of the void-passages, but differ by a
factor 10 in the size of those passages, then the dynamic balances for
them differ by, essentially, a factor 103 and therefore, the fluid
physics in the two samples may be quite different. That contrasts
strongly with constitutive theories of porous-media mechanics, of which
invariance under mere change of geometric scale is a main premise.

It appears doubtful, therefore, that a substantive description of

fluid mechanics in porous media is obtainable without some insight into
the fluid dynamics on the microscopic level, whence macroscopic
behavior must spring.

the pressure drop duz to viscous shear is proportional to a

VII. MACROSCOPIC IMPLICATIONS. For an impression of global
evaporation in a porous medium, a thermodynamically steady phase may
need to be distinguished from an initial, transient phase. The later
phase is characterized by essential equality, at any time, of the
rates of external heat supply and of latent-heat expenditure. The
global mass-rate of evaporation is then immediately known and a lower
bound g of total evaporation time can be deduced as that which

evaporation of the initial liquid mass would need under such conditions,
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Whether such 2 late phase occurs “at .all, or at the other extreme,
whether the transient phase is of no importance, must be judged from
comparison -of Ty with the time scale of ‘the transient phase. The latter

o e A
=2
LAl

o W
- o2

may be one of three scales, of which the first, TT,ACharacterizes the

rate at which the external reservoir can communicate heat to the porous
aggregate and.a second, Ty characterizes the rate at which heat can

SN ™
') -
o Bam

)

L4
F YV

e W

be distributed through the solid mattix. Neither of these is within
the scope of this account, but the time scale T of liquid reSpofise

to the heat supplied to it can be predicted on the basis of the present
results, if adequate knowledge of the statistical distribution uf void-
e passage sizes is at hand,

Sy
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=
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Indeed, if even a relatively small number of large passages thread
the porous aggregate, then all the "action" will occur in them, and
Haines Jumps may be there observable, while the rest of the medium remains
essentially inert until the hy-passes have cleared to an extent making
them effectively a part of the outer boundary of the medium,

1 On the other hand, if enough passage throats of sufficiently small
‘ii size are distributed sufficiently well through the aggregate, then they
will anchor the liquid and permit only creeoing motion. The time scale
Ty would then be expected to be essentially that of transition from

ERAERL Ny

y static stability to dynamic balance, which (8) shows to be

?3 Ty = c1a§/(ue) z (ao/e)z/[ZYu|a'(x_)|].

ii Since it is seen to depend most of all on 3 and €, a useful, maéroscopic
;; estimate of this scale requires both a judicious choice of e between

n 0 and its level in the steady stage, and also a statistically valid

éﬁ measure na% of the cross-sectional areas of small throats, whence the

corresponding measure ag of capillary radii at the small menisci can
be deduced by (9). For a very rough impression (which may well be mis-

leading in regard to specific cases), if ¢ = 1/50, 3g = 10'2 cm and

|a'(x_)| = 10 were appropriate, then for water, Ty~ 4 min,

E; If Ty should turn out to be much longer than Tgr Ty and Ty the

A

f; microscopic dynamics of the main phase of evaporation would be that

bu described in Section V. The stability analysis there given is not linearized,
"y and its results therefore apply to the whole transition from static

L] stability to dynamic balance. Of course, once the initial configuration

S of static stability has been left well behind, the much simpler approxima-

. tion of Section VI becomes adequate. The translation here of the micro-

;4 scopic description into a predictive algorithm on the macroscopic scale

E“:} -
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‘may be -premdture, however, because its usefulness is likely to depend
critically on a more precise knowledge of the statistical distribution
of void-passage sizes than appears available to-date for any real sample.

‘VIII. ‘VAPOR TRANSPORT. For evaporation in dynamic balance, the
time-dependence of the processes in the air-vapor mixture may also be
expected to amount to no more than a slow drift leaving the processes
quasi-steady. Transfer from the capillary wall will heat this gas,
but if the pressure differences in it are insignificant because no small
throats obstruct its passage, then the attendant density change will
not be worth accounting fob, at the temperature levels here envisaged.

Accordingly, the volume flow rate nazu of gas will also be considered
constant along the passage,

The mass evaporated consists of vapor, but the gas flow moves the
air-vapor mixture and must therefore be accompanied by diffusion of
vapor and air into each other. The gas at the meniscus must be at its
dew point, so that the partial vapor pressure there is the saturation
pressure at the meniscus temperature TM' For water vapor, e.g., that

partial pressure is about 1/40 (or 3/40) at Ty ¥ 293 (or 313)° K, and

the gas even at the meniscus then consists almost entirely of air,
Since the.partial vapor density is even smaller [4], the diffusion of
the vapor is adequately approximated by the standard, linear mcdel of
Fick's law, jv =z - Qva, for the vapor flux, With unsteadiness already

neglected, the same mass-flow rate of vapor must cross every capillary

2 2

cross-section, 'so that na up, - ma dev/dx is independent of x., It

follows that

p, - P
Pve " Pym

(C-Ee)/q,

vin

= e

where subscripts m and e distinguish respective values at meniscus and
capillary exit,

X
g = al jx [a()172 as,
m

and q = Q/um is a diffusion-length scale based on the gas velocity un

at the meniscus. Most of the diffusion therefore occurs within a §-
distance q of the exit, by contrast to the heat transfer, most of which
occurs fairly close to the meniscus.

The process can be radically different, however, if the gas must
pass through a small throat. Let u denote again the cross-sectional
average of the gas velocity and let subscripts %, g, v, a, m and t distin-
guish reference to the liquid, gas, vapor, air, meniscus and throat,
respectively, Then from the estimate of meniscus velocity relative
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to the liquid in Section IV, aun = Ye”gpg/pv’ approximately, and since
this is independent of meniscus size, so is the Reynolds number Rem =z
=‘amum/va of the gas-flow at the meniscus. Since v, ¥ 0.15 cmz/sec

and p,/p, = 10 for water, Table 1 (Section IV) indicates Re = 2 to
be a rather typical value. The mass-flow rate m = nangu is independent

of x in near-steady evaporation, and apart from the influence of density
changes, the local Reynolds number Re = au/va of the gas-flow varies

in proportion to am/a(x). For most plausible values of am/at, the gas-

flow therefore remains laminar even in a throat, and the pressure drop
can again be estimated from Poiseuille's formula,

3 2 3
a dp/dx = - Buam/(na pg) z - Buaamum/a ,
where 8uaamum is independent of meniscus size and typically, = 5 x 10-7 gr

7

when u_ =2 x 107" gr sec/cmz.

If now a_ = 1072 cm, to fix the ideas, then a /a, = 10 yields a

value of 5 x 107 atm for |a dp/dx| at the throat, and the pressure
drop is insignificant, If am/a.t = 100, however, then the estimate suggests

a value of 5 atm for |a dp/dx| at the throat, and not only the estimate,
but clearly also, most of the premises and assumptions of this Note,
collapse. If the evaporation estimates remained valic when the gas

must pass through very small throats, they would imply major gasdynamical
effects in such throats, the work expended on them would play a major
role in the thermodynamic balances, and the meniscus tem-=rature TM

could not be expected to be close to the initial, ambient temperature
TO; the physics of evaporation would be quite different from that here

described. Accordingly, the microscopic physics of evaporation may
depend rather drastically on whether a porous medium is formed into
a sheet-like or bsll-like aggregate...

The great sensitivity of quantitative estimates to void-passage
size suggests that a profitable discussicn of fluid mechanics in porous
media may need to relate to quite specific circumstances. In particular,
if thought returned to fabrics, it appears unlikely that the same micro-
scopic physics could describe evaporation from wool, gore-tex or pile.
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